2Bsecure

Ication Penetration
est Report

TrustMi

March 27, 2025

©°

© °°°
matrix Ooo
2Bsecure

Table of Contents

Overview

Track Changes

Executive Summary

Scope

Conclusions

Vulnerabilities Index

Appendix A Work Scheme

Findings - Infrastructure

Lack of software updates

IAM Users with Overlooked Permissions to Create Access Keys for Admin Accounts

Username Enumeration via WPScan

Exposure of Slack Bot Token and Slack Webhooks in AWS Environment Variables

Outdated OpenSSH Utilized in the Internal Network

Username Enumeration via Login Page Error Message

23

18

21

Page 1

©°

© ¢%
matrlxooo
2Bsecure
Track Changes
Name Date Action
1. Roee Drikes, Haili Sambrano February 18, 2025 Test Operators
2. Roee Drikes, Haili Sambrano February 26,2025 Report Writers
3. Meital Guzi March 27, 2025 Report Reviwer

Page 2

©°

© °°°
matrix Ooo
2Bsecure

Executive Summary

General

TrustMi hired 2BSecure to perform penetration tests on the Trustmi Portals. The purpose of the
tests was to examine the application’s immunity and measure its security level, while
considering both technology and business logic. Penetration tests aspire to reveal most of the
existing security risks, such as confidential information exposure, data corruption, interference

with availability, or damage to servers, applications, organizations, clients, etc.

System Description
TrustMi platform was designed to protect the end-to-end business payment process from all
threats, internal and external, across the entire payment flow making sure payments go

through seamlessly.

Activity Description

During February 2025, 2BSecure performed a penetration test to Trustmi Portals applications
and Trustmi infrastructure. The tests were performed manually and automatically in order to
examine all the application’s requests, actions, and procedures, aspiring to expose all of the

security flaws in the system.

The audit took place at 2BSecure’s labs on a production environment, and was implemented

with a highly sensitive approach to avoid interfering with the routine activity of the system.

Page 3

©°

© °°°
matrix °o°
2Bsecure

Scope

The table below lists the areas designated for this penetration test, based on the parameters

defined in the quote.

#

Target Name
External Addresses
External Addresses
Dev

Networking
Shared-Services
Trustmi-MGMT-Dev
TrustmiAdmin
AWS User Account

External Addresses

Value

files.trustmi.ai

workato.trustmi.ai

10.116.0.0/16

10.115.0.0/22

10.115.12.0/22

10.12.0.0/16

10.0.0.0/16, 10.10.0.0/16, 10.11.0.0/16, 192.168.0.0/16
PenTestUser2Bsecure

trustmi.ai

Page 4

©°

© %
matrix Ooo
2Bsecure

Conclusions

The audit found that the Trustmi Portals application is exposed to numerous vulnerabilities.

The findings were well-analyzed and aggregated based on two factors, Risk and Probability.

Together, these factors produce the severity level of the vulnerability, based on the global

OWASP convention.
Overall Risk Severity
HIGH High Critical
Impact Low High
LOW Informative Low
LOW HIGH
Likelihood

The final security level of the entire Trustmi Portals application is based on all the
vulnerabilities found and the severity level of each one. The following chart presents the

distribution of the severity levels of the vulnerabilities found:

Page 5

©°

©c%
matrix Ooo
2Bsecure

Severity Levels of Findings

Number of Findings

T T
Informative Low Medium High Critical

Severity Level

In conclusion, the Trustmi Portals application severity level is High.

The vulnerabilities found might present a risk to the organization, the application, and its
users. It is recommended to study the findings presented in this document and correct them

accordingly.

Page 6

©°

© °°°
matrix °o°
2Bsecure

Vulnerabilities Index

The following table presents the vulnerabilities identified and the severity level of each one.

Detailed explanations and recommendations can be found in the sections below.

. Risk
I) Level
1. Lack of software updates High

2. IAM Users with Overlooked Permissions to Create Access Keys for Admin Accounts High
3. Username Enumeration via WPScan Medium
4. Exposure of Slack Bot Token and Slack Webhooks in AWS Environment Variables Medium
5. Outdated OpenSSH Utilized in the Internal Network Low

6. Username Enumeration via Login Page Error Message Low

Page 7

Cﬁ%ﬁb
matrix Oco
2Bsecure

Application Vulnerability Description

1. Lack of software updates
Likelihood: Medium, Impact: High

Threat Description
During the assessment, an outdated SSH service version that contains a known vulnerability
was found to be running on a target. This outdated configuration can potentially expose the

system to attacks and unauthorized access.

Impact Description
If exploited, the vulnerability might enable an attacker to bypass authentication mechanisms

and gain unauthorized access to the system.

Likelihood Description

Exploitation is moderately likely, especially in environments in which the SSH service is directly
exposed to the internet and patch management is lax. Automated tools that scan for outdated
SSH versions further increase the risk of this vulnerability being discovered and exploited by

adversaries.

Attack description

The following photo shows the exposure of the vulnerable SSH version on the target:

~/CVE-2024-6387

22 184.73.199.124
Starting Nmap 7.94SVN (https://nmap.org) at 2025-02-18 06:34 EST
Nmap scan report for ec2-184-73-199-124.compute-1.amazonaws.com (184.73.199.124)
Host is up (@.15s latency).

PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu®.1@ (Ubuntu Linux; protocol 2.0)
Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1.49 seconds

This version is vulnerable, and has exploits that are publicly available.
The following photo shows that the scanner of CVE-2024-6387 identify the target as

vulnerable:

Page 8

https://github.com/sxlmnwb/CVE-2024-6387

Cf%fb
matrix Ooo
2Bsecure

~/CVE-2024-6387
CVE-2024-6387.py scan

[l Servers likely vulnerable: 1
[+] Server at (running SSH-2.0-OpenSSH_8.9p1 Ubuntu-3ubuntu®.10)

[l Servers not vulnerable: 0

[l Servers likely not vulnerable (possible LoginGraceTime remediation): @

. Servers with unknown SSH version: 0

B Total scanned hosts: 1

@

Countermeasures
« Update the SSH service to the latest stable version.

- Consider additional measures such as network segmentation and strict access controls.

Page 9

©°

© %
matrix Ooo
2Bsecure

2. 1AM Users with Overlooked Permissions to Create Access Keys
for Admin Accounts

High Severity | Likelihood: Medium, Impact: High

Threat Description

Certain legacy IAM users retain permissions to create access keys for a higher-privileged,
effectively administrative user. Although the organization has transitioned to using Single Sign-
On (SSO) for day-to-day access, these legacy IAM users still exist in the AWS environment, and

their permissions remain in place.

Impact Description

An attacker or malicious insider with access to one of these legacy IAM accounts could exploit

the permission to create an access key for the administrative user. By generating a new access
key, the attacker could bypass SSO controls and gain unauthorized administrative access. This
would potentially allow the attacker to modify configurations, exfiltrate sensitive data, or

perform other high-impact actions within the AWS environment.

Likelihood Description
Although the legacy IAM users are not actively used due to the migration to SSO, their residual
permissions remain unaddressed. This oversight provides an exploitable attack vector if these

legacy credentials are compromised or if an insider misuses their access rights.

Attack description

An attacker or malicious insider with access to one of these legacy IAM accounts could exploit
the permission to create an access key for the administrative user (Shachar). By generating a
new access key, the attacker could gain unauthorized administrative access. This would
potentially allow them to modify configurations, exfiltrate sensitive data, or perform other

high-impact actions within the AWS environment.

The attack vector that can be utilized to gain unauthorized access can be seen in the following

photo:

Page 10

°°°°°
matrix Oco
2Bsecure

+ &
0.0
& _l‘ "
% [thaccessiist]
[oevReadontyAccessGroup}
&8 a
723 ~
m‘
[

Groups with the tnAccess list permission can create an access key to Shacher's user and gain

an admin access to the AWS environment.

Attack Path Notes

Countermeasures

« It is recommended to delete users that are no longer in use such as the Analysts and

DevReadOnly who has access to the permissions to create access key for Shachar's user.

« Conduct a comprehensive review of IAM policies to ensure adherence to the principle of

least privilege, removing any unnecessary or outdated permissions.

Page 11

©°

CbgPQ
matrix Ooo
2Bsecure

3. Username Enumeration via WPScan

{ Medium Severity } Likelihood: High, Impact: Low

Threat Description

The audit found that usernames are disclosed on the marketing site. The system allows an

attacker to obtain a list of the system’s users by scanning the WP instance with WPScan.

Impact Description

The exposure of valid usernames enables attackers to more easily conduct brute force or
credential stuffing attacks. Knowledge of legitimate user accounts can be combined with

social engineering or phishing strategies to compromise additional security layers..

Likelihood Description

This vulnerability is highly likely to be exploited since WPScan and similar automated scanning
tools are freely available and commonly used by attackers. Additionally, many WordPress
installations retain default configurations that expose author information, making the attack

both easy and effective.

Attack description

Attackers can automate the discovery of valid usernames by running WPScan or similar tools

against the WordPress instance as can be seen in the following picture:

Page 12

°°°°°
lnaﬁnx1%p
2Bsecure

'+ URL: https://trustmi.ai/ [141.193.213.10]
'+ Started: Sun Feb 23 ©8:24:33 2025

Interesting Finding(s):

Headers

| Interesting Entries:

| - x-powered-by: WP Engine

I x-cacheable: bot

I x-cache-group: bot

I cf-cache-status: HIT

I server: cloudflare

I cf-ray: 9167850cfffdc224-TLV
I alt-svc: h3=":443"; ma=86400
| Found By: Headers (Passive Detection)
| Confidence: 100%

+] robots.txt found: https://trustmi.ai/robots.txt
| Found By: Robots Txt (Aggressive Detection)
| Confidence: 100%

Fingerprinting the version - Time: 00:00:49 ¢
The WordPress version could not be detected.

| WordPress theme 1n use: bootscore

Location: https://trustmi.ai/wp-content/themes/bootscore/

Style URL: https://trustmi.ai/wp-content/themes/bootscore/styld
Style Name: Bootscore

Style URI: https://bootscore.me/

Description: Flexible Bootstrap WordPress starter-theme for dew
Author: Bootscore

Author URI: https://bootscore.me

Found By: Css Style In Homepage (Passive Detection)

Version: 6.0.4 (80% confidence)
Found By: Style (Passive Detection)
- https://trustmi.ai/wp-content/themes/bootscore/style.css?ve

Enumerating Users (via Passive and Aggressive Methods)
Brute Forcing Author IDs - Time: 00:00:00 ¢

User(s) Identified:

adamdev
| Found By: Yoast Seo Author Sitemap (Aggressive Detection)
| - https://trustmi.ai/author-sitemap.xml

©°

© %
matrix Ooo
2Bsecure

Once valid usernames are enumerated, adversaries may employ brute force, dictionary
attacks, or credential stuffing to compromise accounts or use the information for targeted

social engineering campaigns.
Countermeasures

+ Disable or limit access to endpoints that expose author information. Use plugins or

custom code to obfuscate usernames.

+ Review and update WordPress security settings to minimize information leakage.

consider using plugins such as "Stop User Enumeration”

Page 14

https://wordpress.org/plugins/stop-user-enumeration/

°°°°°
matrix Ooo
2Bsecure

4. Exposure of Slack Bot Token and Slack Webhooks in AWS
Environment Variables

Likelihood: Low, Impact: High

Threat Description

Slack bot tokens and Slack webhook URLs are stored directly in the environment variables of
AWS Lambda functions rather than being managed via a secure secrets manager. This
misconfiguration allows users with certain AWS IAM permissions to access these sensitive

credentials, increasing the risk of unauthorized use.

Impact Description
Malicious actors can use the bot to disseminate malicious content or phishing links,

compromising the integrity of internal communications.

Likelihood Description
An attacker would first need to obtain an AWS user with sufficient permissions to read the data

from the lambda function.

Attack description
An attacker or a malicious insider with sufficient AWS permissions can inspect Lambda
function configurations to retrieve these environment variables, as can be seen in the

Following photo:

Pacu (Trustmi25:trustmi) > run lambda__enum
Running module lambda__enum...
[lambda__enum] Starting region us-east
[lambda__enum] Enumerating data for colgate_daily_files
[lambda__enum] FAILURE:
[lambda__enum] MISSING NEEDED PERMISSIONS
[lambda__enum] Enumerating data for aws-controltower-NotificationForwarder
[lambda__enum] FAILURE:
[lambda__enum] MISSING NEEDED PERMISSIONS

[lambda__enum] Enumerating data for test

[lambda__enum] FAILURE:

[lambda__enum] MISSING NEEDED PERMISSIONS
[lambda__enum] Enumerating data for rotate_service_tokens
[lambda__enum] FAILURE:

[lambda__enum] MISSING NEEDED PERMISSIONS

Secr \V): SL JRL=)¢ 1 .
[lambda__enum] Enumerating data for auto_restart_tableau-DEV-893
[lambda__enum] FAILURE:

[lambda__enum] MISSING NEEDED PERMISSIONS
[lambda__enum] Enumerating data for New_File_Notification
[lambda__enum] FAILURE:

[lambda__enum] MISSING NEEDED PERMISSIONS

Secr N SL N= 2665108266454-81230398722

3 r] JRL= t .sl
[lambda__enum] Enumera g data for tableau_connection_test
[lambda__enum] FAILURE:

[lambda
[lambda

enum] MISSING NEEDED PERMISSIONS
enum] lambda__enum completed.

[lambda__enum] MODULE SUMMARY :

7 functions found in us-east-1. View more information in the DB

Page 15

©°

©"¢%
matrlxooo
2Bsecure

With access to the Slack bot token and webhook URLs, the attacker can impersonate the bot,

sending unauthorized messages, malicious links, or phishing content to Slack channels.

https://slack.com/api/chat.postMessage

POST

Params

nene

I R N e

v https://slack.com/api/chat.postMessage

Authorization @

Headers (10) Body @ Pre-request Script Tests Settings ®

x-www-form-urlencoded @ raw binary GraphQL JSON v

form-data
1
"channel”:"#trustmi",
"text":"This is a PT Test"
B
=

Visualize JSON v =

"https://a.slack-edge.com/80588/img/plugins/app/bot_36.png",
"https://a.slack-edge.com/80588/img/plugins/app/bot_48.png",
"https://a.slack-edge.com/80588/img/plugins/app/sexvice_72.png"

Body Cookies Headers (29) Test Results
Pretty Raw Preview
1
2 "ok": true,
3 "channel”: "C®2KNRCVSRB",
4 "ts": "1739884305.722559",
5 "message”: {
6 “usexr”: "U@83M15RN75",
7 “type”: "message",
8 “ts": "1739884305.722559",
9 “bot_id": "B@849TS8E9E",
10 “app_id": "A®33ZPLGQDP",
11 “text”: "This is a PT Test",
12 “team”: "TEO2KK367UDC",
13 “"bot_profile": {
14 “id": "B@849T58E9E",
15 “app_id": "AG83ZPLGQDP",
16 “name”: "S3_New_Files",
17 “icons™: {
18 “image_36":
19 “image_48":
20 “image_72":
21 i,
22 “deleted": false,

This impersonation could be leveraged to deceive team members, propagate misinformation,

or serve as a foothold for further attacks.

Page 16

©°

CbgPQ
matrix Ooo
2Bsecure

Countermeasures

« Migrate all sensitive credentials to AWS Secrets Manager or an equivalent secure storage

solution designed for managing secrets.

« Ifimmediate migration is not feasible, ensure that environment variables are encrypted

and accessible only to a minimal set of privileged users.

Page 17

©°

© %
matrix Ooo
2Bsecure

5. Outdated OpenSSH Utilized in the Internal Network
Likelihood: Medium, Impact: Low

Threat Description

During the internal network assessment, it was identified that several systems are running an
outdated version of OpenSSH. Although these systems are protected by internal network
defenses, the use of an outdated SSH version exposes them to known vulnerabilities and

security limitations that have been resolved in later releases.

Impact Description
Once inside the network, an attacker may use the outdated SSH service to
gain control over the system and escalate privileges, or as a pivot point for

infiltrating other systems.

Likelihood Description

A malicious actor would need to gain a foothold within the internal network.

Attack description

An attacker who gains internal access or successfully bypasses network segmentation could
target these outdated SSH services. Exploitation may involve leveraging known vulnerabilities
in OpenSSH.

The following photo show a list of targets that are running an out dated OpenSSH:

Page 18

©°

©c%
matrlxooo
2Bsecure

Ports / Hosts Topoloc Host Details

. 192.168.174.132 22 tcp open OpenSSH 9.6p1 Ubuntu 3ubuntu13.8 (Ubuntu Linux; protocol 2.0)
. 10.11.231.238 22 tcp open OpenSSH 8.9p1 Ubuntu 3ubuntu0.11 (Ubuntu Linux; protocol 2.0)
. 192.168.69.130 22 tcp open OpenSSH 8.9p1 Ubuntu 3ubuntu0.11 (Ubuntu Linux; protocol 2.0)

10.11.0.110 OpenSSH 7.4 (protocol 2.0)
. 10.11.4.87 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.5.171 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.6.107 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.8.30 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.8.134 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.10.115 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.12.160 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.16.128 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.23.185 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.24.21 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.25.101 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.26.191 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.27.144 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.29.206 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.30.124 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 10.11.31.40 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.128.63 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.136.92 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.145.90 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.149.203 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.151.26 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.151.189 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.151.224 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.153.173 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.162.212 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.165.7 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.166.184 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.166.215 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.178.212 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.181.84 22 tcp open OpenSSH 7.4 (protocol 2.0)
. 192.168.191.58 22 tcp open OpenSSH 7.4 (protocol 2.0)

Countermeasures

+ Update all systems running OpenSSH to the latest stable version.

Page 19

©°

C)‘PQ
matrix °°o
2Bsecure

« Implement a robust patch management process to ensure that all internal systems are

regularly updated and secured.

Page 20

©°

© %
matrix Ooo
2Bsecure

6. Username Enumeration via Login Page Error Message

Low Severity | Likelihood: Medium, Impact: Low

Threat Description

A vulnerability was observed on the login page where different error messages are returned
depending on the existence of the username provided. This discrepancy enables an attacker to
determine the validity of a username, thereby facilitating targeted brute force and credential

stuffing attacks.

Impact Description
Gaining valid usernames can help attackers focus their efforts on compromising accounts

through brute force or credential stuffing.

Likelihood Description
The attack is simple to execute using both automated tools and manual methods and relies on

the attacker successfully guessing usernames.

Attack description

By systematically submitting login attempts with various usernames, an attacker can
differentiate between valid and invalid accounts based on the error messages received. Once
valid usernames are confirmed, attackers can focus on exploiting those accounts through

brute force, phishing, or other credential-based attacks.

The following photo shows the error message displayed when attempting to login with a

username that does not exist:

Page 21

©

© %
matrix °o°
2Bsecure

c

trustmi.ai/wp-login.php?wpe-login=true

Error: The username test is not registered on this
site. If you are unsure of your username, try your
email address instead.

Username or Email Address

Password

®]

() Remember Me

Lost your password?

+~ Go to Trustmi | #1 Human Behavioral Al
Platform

The following photo shows that the username exists but the password is incorrect:

[4] trustmi.ai/wp-login.php?wpe-login=true

Countermeasures

Error: The password you entered for the username
damdev is incorrect. Lost your password?

Username or Email Address

{adamdev

Password

| ®)

(7) Remember Me

Lost your password?

«~ Go to Trustmi | #1 Human Behavioral Al
Platform

Send a uniform error message (e.g., “Invalid login credentials”) for all failed login attempts,

regardless of whether the username or password is incorrect.

Page 22

©°

© °°°
matrix Ooo
2Bsecure

Appendix A Work Scheme

Infrastructure Testing Methodology

2BSecure’s inspection methodology relies on ISC?, which involves vast testing at the
infrastructure level with an emphasis on the development stage. The inspection technique
relies on manual tests as well as automatic tools. Testing was performed using a black box
approach, meaning the testing team had no prior knowledge of the tested servers. This unique
approach offers an actual simulation of a real hacker trying to attack the application,
infrastructure, and end users. This test enables determining the security level and vulnerability

of the servers and network.

Application Testing Methodology

2BSecure’s inspection methodology relies on OWASP, which involves vast testing at the
application level with an emphasis on the development stage. The inspection technique relies
on manual tests as well as automatic tools. Testing was performed using a black box approach,
meaning the testing team had no prior knowledge about the application. This unique
approach offers an actual simulation of a real hacker trying to attack the application and the

end users. This test enables determining the security level and vulnerability of the application.

List of tests performed during the penetration test:

The following is a list of attacks and tests performed during the investigation. The list includes
all known attacks at the present time. It is important to state that the system has been found
vulnerable to the attacks described in this document, however there may be vulnerabilities

that were not revealed during the test due to time limitations and the test methodology used.

The following table lists the tests performed as part of the penetration tests:

Authentication Verification Requirements

Test that user-set passwords are at least 12 characters long.
Password Security Requirements
Verify that password change requires the user's current and new password.

Verify that anti-automation controls are effective at mitigating breached credential testing, brute force, and account
lockout attacks.

General Authenticator Requirements
Test that use of weak authenticators (such as SMS and email) is limited to secondary verification and transaction approval.

Verify that the system securely and randomly generates initial passwords and activation codes that are at least 6
characters long, and expire after a short period of time.

Authenticator Lifecycle Requirements
Verify that system-generated initial activation or recovery secrets are not sent in clear text to the user.
Verify that password credential recovery does not reveal the current password in any way.

Credential Recovery Requirements
Shared or default accounts are not present (e.g.root",admin", orsa").

Page 23

©°

CbgPQ
matrix Ooo
2Bsecure

Verify that forgotten password and other recovery paths use a secure recovery mechanism.

Single or Multi-factor One Time Verifier

Verify that time-based OTPs expire after a pre-defined lifetime. ;
Requirements

Session Management Verification Requirements

Verify that the application generates a new session token upon user authentication.
Verify that the application only stores session tokens in the browser using secure methods such as appropriately secured Session Binding Requirements
cookies or HTML 5 session storage.

Session Logout and Timeout

Verify that logout and expiration invalidate the session token, including across relaying parties. Requirements

Verify that cookie-based session tokens have the 'Secure' and ‘HttpOnly’ attributes set.

Test if the application shares a domain name with other applications that set or use session cookies that overwrite or Coaliiz brsed Sesslon MEmEgamai

disclose the session cookies.

Verify that the application ensures a full, valid login session or requires re-authentication or secondary verification before Defenses Against Session Management
allowing any sensitive transactions. Exploits

Access Control Verification Requirements
Verify that the application enforces access control rules on a trusted service layer.

Verify that all user and data attributes and policy information used by access controls cannot be manipulated by end users
unless they have been specifically authorized.

Verify that the principle of least privilege exists. This implies protection against spoofing and elevation of privilege. Sremmerel Aadzss Coriiirel] D
Verify that the principle of deny by default exists.
Verify that access controls fail securely, including when an exception occurs.
Verify that sensitive data and APIs are protected against Insecure Direct Object Reference (IDOR) attacks.
Operation Level Access Control
Verify that the application or framework enforces a strong anti-CSRF mechanism to protect authenticated functionality.
Verify that administrative interfaces use appropriate multi-factor authentication to prevent unauthorized use.
Other Access Control Considerations
Verify that directory browsing is disabled unless deliberately desired.
Validation, Sanitization and Encoding Verification Requirements
Verify that the application has defenses against HTTP parameter pollution attacks.

Verify that the frameworks protect against mass parameter assignment attacks.

Verify that all input (HTML form fields, REST requests, URL parameters, HTTP headers, cookies, batch files, RSS feeds, etc.)

is validated. Input Validation Requirements

Verify that structured data is strongly typed and validated against a defined schema, including allowed characters, length,
and pattern.

Verify that the URL redirects and forwards only allowed destinations that appear on an allow list, or shows a warning when
redirecting to untrusted content.

Verify that all untrusted HTML input from WYSIWYG editors or similar is properly sanitized with an HTML sanitizer library or
framework feature.

Verify that the application sanitizes user input before passing it on to mail systems, to protect against SMTP or IMAP
injection.
Verify that the application protects against template injection attacks.
Verify that the application protects against SSRF attacks.
Verify that context-aware, preferably automated - or at worst, manual - output escaping protects against reflected, stored,
and DOM based XSS.
Sanitization and Sandboxing

Verify that data selection or database queries (e.g. SQL, HQL, ORM, NoSQL) are protected from database injection attacks. = Requirements

Test for JavaScript or JSON injection attacks, including for eval attacks, remote JavaScript includes, Content Security
Policy (CSP) bypasses, DOM XSS, and JavaScript expression evaluation.

Test for LDAP injection vulnerabilities, or that specific security controls that prevent LDAP injection have been
implemented.

Test for OS command injection.

Test for Local File Inclusion (LFI) or Remote File Inclusion (RFI) attacks.

Test for XPath injection or XML injection attacks.

Verify that serialized objects use integrity checks or are encrypted to prevent hostile object creation or data tampering. Deserialization Prevention

Requirements
Test for XML eXternal Entity (XXE) attacks.

Page 24

©°

CbgPQ
matrix Ooo
2Bsecure

Verify that deserialization of untrusted data is avoided or protected in both custom code and third-party libraries (such as
JSON, XML and YAML parsers).

Verify that when parsing JSON in browsers or JavaScript-based backends, JSON.parse is used to parse the JSON
document.

Error Handling and Logging Verification Requirements
Verify that a generic message is shown when an unexpected or security sensitive error occurs. Error Handling
Data Protection Verification Requirements

Verify that sensitive data is sent to the server in the HTTP message body or headers.
Sensitive Private Data
Verify that all sensitive data created and processed by the application has been identified.

Communications Verification Requirements

Verify that secured TLS is used for all client connectivity.

Client Communications Security

Verify that only strong algorithms, ciphers, and protocols are enabled. Requirements

Verify that old versions of SSL and TLS protocols, algorithms, ciphers, and configuration are disabled.
Malicious Code Verification Requirements

Test that the application doesn’t load or execute code from untrusted sources or the internet, such as loading includes,

modules, plugins, code, or libraries. Deployed Application Integrity
Controls

Verify that the application has protection against subdomain takeovers.

Verify that the application will only process business logic flows for the same user in sequential step order and without
skipping steps.

Verify that the application has appropriate limits for specific business actions or transactions, which are correctly enforced
on a per-user basis.) . ! .
Business Logic Security Requirements

Test for data exfiltration, excessive business logic requests, excessive file uploads, or denial of service attacks.

Verify that the application has business logic limits or validation, identified using threat modeling or similar
methodologies.

File and Resources Verification Requirements
Test for acceptance of large files that could fill up storage or cause a denial of service. File Upload Requirements

Verify that user-submitted filename metadata is not used directly by system or framework filesystems and that a URL APl is
used to protect against path traversal.

Verify that user-submitted filename metadata is validated or ignored to prevent the disclosure, creation, update, or
removal of local files (LFI).

Test for disclosure or execution of remote files via Remote File Inclusion (RFI) or Server-Side Request Forgery (SSRF) 1 . .
S, File Execution Requirements
Test for Reflective File Download (RFD) by validating or ignoring user-submitted filenames in a JSON, JSONP, or URL

parameter.

Verify that untrusted file metadata is not used directly with system API or libraries, to protect against OS command
injection.

Verify that files obtained from untrusted sources are stored outside the web root, with limited permissions, preferably with
strong validation.
File Storage Requirements
Verify that files obtained from untrusted sources are scanned by antivirus scanners to prevent upload of known malicious
content.

Verify that the web tier is configured to serve only files with specific file extensions, to prevent unintentional information
and source code leakage. . .

File Download Requirements
Verify that direct requests to uploaded files will never be executed as HTML/JavaScript content.

Verify that the web or application server is configured with an allow list of resources or systems that can send requests or

load data/files from. SSRF Protection Requirements

APl and Web Service Verification Requirements

Test for parsing attacks that exploit different URI or file parsing behavior that could be used in SSRF and RFI attacks.

Generic Web Service Security

Verify that access to administration and management functions is limited to authorized administrators. P !
Verification Requirements

Verify that API URLs do not expose sensitive information, such as the API key, session tokens, etc.

Verify that JSON schema validation is in place and verified before accepting input. RESTful Web Service Verification

Verify that RESTful web services that utilize cookies are protected from Cross-Site Request Forgery. REGJUTEAEES

Configuration Verification Requirements

Verify that all components are up to date. Dependency

Page 25

©°

© %
matrix °o°
2Bsecure

Verify that all unneeded features, documentation, samples, and configurations are removed.
Verify that error messages are not showing any unintended security disclosures.

Verify that debug modes are disabled in production to eliminate debug features, developer consoles, and unintended

Lo Unintended Security Disclosure
security disclosures.

Requirements
Verify that the HTTP headers or any part of the HTTP response do not expose detailed version information of system
components.

Verify that a Content Security Policy (CSP) response header is in place that helps mitigate impact of XSS attacks like HTML,
DOM, JSON, and JavaScript injection.

Verify that a Strict-Transport-Security header is included in all responses and for all subdomains HTTP Security Headers Requirements

Test that the content of a web application cannot be embedded in a third-party site by default, and frame-ancestors and X-
Frame-Options response headers are set.

Verify that the supplied Origin header is not used for authentication or access control decisions.

Validate HTTP Request Header

Verify that the Cross-Origin Resource Sharing (CORS) Access-Control-Allow-Origin header uses a strict allow list of trusted X
Requirements

domains and subdomains to match against, and does not support thenull" origin.

Page 26

	Web Application Penetration Test Report
	Table of Contents
	Overview
	Findings - Infrastructure

	Track Changes
	Executive Summary
	General
	System Description
	Activity Description

	Scope
	Conclusions
	Vulnerabilities Index
	Application Vulnerability Description
	1. Lack of software updates
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	2. IAM Users with Overlooked Permissions to Create Access Keys for Admin Accounts
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	3. Username Enumeration via WPScan
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	4. Exposure of Slack Bot Token and Slack Webhooks in AWS Environment Variables
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	5. Outdated OpenSSH Utilized in the Internal Network
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	6. Username Enumeration via Login Page Error Message
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	Appendix A Work Scheme
	Infrastructure Testing Methodology
	Application Testing Methodology
	List of tests performed during the penetration test:

