
Web Application Penetration
Test Report

TrustMi

March 27, 2025

Table of Contents

Overview

Track Changes

Executive Summary

Scope

Conclusions

Vulnerabilities Index

Appendix A Work Scheme

Findings - Infrastructure

Lack of software updates

IAM Users with Overlooked Permissions to Create Access Keys for Admin Accounts

Username Enumeration via WPScan

Exposure of Slack Bot Token and Slack Webhooks in AWS Environment Variables

Outdated OpenSSH Utilized in the Internal Network

Username Enumeration via Login Page Error Message

• 2

• 3

• 4

• 5

• 7

• 23

• 8

• 10

• 12

• 15

• 18

• 21

Page 1

Track Changes

Name Date Action

1. Roee Drikes, Haili Sambrano February 18, 2025 Test Operators

2. Roee Drikes, Haili Sambrano February 26, 2025 Report Writers

3. Meital Guzi March 27, 2025 Report Reviwer

Page 2

Executive Summary
General
TrustMi hired 2BSecure to perform penetration tests on the Trustmi Portals. The purpose of the

tests was to examine the application’s immunity and measure its security level, while

considering both technology and business logic. Penetration tests aspire to reveal most of the

existing security risks, such as confidential information exposure, data corruption, interference

with availability, or damage to servers, applications, organizations, clients, etc.

System Description
TrustMi platform was designed to protect the end-to-end business payment process from all

threats, internal and external, across the entire payment flow making sure payments go

through seamlessly.

Activity Description
During February 2025, 2BSecure performed a penetration test to Trustmi Portals applications

and Trustmi infrastructure. The tests were performed manually and automatically in order to

examine all the application’s requests, actions, and procedures, aspiring to expose all of the

security flaws in the system.

The audit took place at 2BSecure’s labs on a production environment, and was implemented

with a highly sensitive approach to avoid interfering with the routine activity of the system.

Page 3

Scope

The table below lists the areas designated for this penetration test, based on the parameters

defined in the quote.

Target Name Value

1. External Addresses files.trustmi.ai

2. External Addresses workato.trustmi.ai

3. Dev 10.116.0.0/16

4. Networking 10.115.0.0/22

5. Shared-Services 10.115.12.0/22

6. Trustmi-MGMT-Dev 10.12.0.0/16

7. TrustmiAdmin 10.0.0.0/16, 10.10.0.0/16, 10.11.0.0/16, 192.168.0.0/16

8. AWS User Account PenTestUser2Bsecure

9. External Addresses trustmi.ai

Page 4

Conclusions

The audit found that the Trustmi Portals application is exposed to numerous vulnerabilities.

The findings were well-analyzed and aggregated based on two factors, Risk and Probability.

Together, these factors produce the severity level of the vulnerability, based on the global

OWASP convention.

Overall Risk Severity

Impact

HIGH Medium High Critical

MEDIUM Low Medium High

LOW Informative Low Medium

LOW MEDIUM HIGH

Likelihood

The final security level of the entire Trustmi Portals application is based on all the

vulnerabilities found and the severity level of each one. The following chart presents the

distribution of the severity levels of the vulnerabilities found:

Page 5

In conclusion, the Trustmi Portals application severity level is High.

The vulnerabilities found might present a risk to the organization, the application, and its

users. It is recommended to study the findings presented in this document and correct them

accordingly.

Page 6

Vulnerabilities Index

The following table presents the vulnerabilities identified and the severity level of each one.

Detailed explanations and recommendations can be found in the sections below.

Title Risk
Level

1. Lack of software updates High

2. IAM Users with Overlooked Permissions to Create Access Keys for Admin Accounts High

3. Username Enumeration via WPScan Medium

4. Exposure of Slack Bot Token and Slack Webhooks in AWS Environment Variables Medium

5. Outdated OpenSSH Utilized in the Internal Network Low

6. Username Enumeration via Login Page Error Message Low

Page 7

Application Vulnerability Description

1. Lack of software updates
High Severity Likelihood: Medium, Impact: High

Threat Description

During the assessment, an outdated SSH service version that contains a known vulnerability

was found to be running on a target. This outdated configuration can potentially expose the

system to attacks and unauthorized access.

Impact Description

If exploited, the vulnerability might enable an attacker to bypass authentication mechanisms

and gain unauthorized access to the system.

Likelihood Description

Exploitation is moderately likely, especially in environments in which the SSH service is directly

exposed to the internet and patch management is lax. Automated tools that scan for outdated

SSH versions further increase the risk of this vulnerability being discovered and exploited by

adversaries.

Attack description

The following photo shows the exposure of the vulnerable SSH version on the target:

This version is vulnerable, and has exploits that are publicly available.

The following photo shows that the scanner of CVE-2024-6387 identify the target as

vulnerable:

Page 8

https://github.com/sxlmnwb/CVE-2024-6387

Countermeasures

Update the SSH service to the latest stable version.

Consider additional measures such as network segmentation and strict access controls.

•

•

Page 9

2. IAM Users with Overlooked Permissions to Create Access Keys
for Admin Accounts

High Severity Likelihood: Medium, Impact: High

Threat Description

Certain legacy IAM users retain permissions to create access keys for a higher-privileged,

effectively administrative user. Although the organization has transitioned to using Single Sign-

On (SSO) for day-to-day access, these legacy IAM users still exist in the AWS environment, and

their permissions remain in place.

Impact Description

An attacker or malicious insider with access to one of these legacy IAM accounts could exploit

the permission to create an access key for the administrative user. By generating a new access

key, the attacker could bypass SSO controls and gain unauthorized administrative access. This

would potentially allow the attacker to modify configurations, exfiltrate sensitive data, or

perform other high-impact actions within the AWS environment.

Likelihood Description

Although the legacy IAM users are not actively used due to the migration to SSO, their residual

permissions remain unaddressed. This oversight provides an exploitable attack vector if these

legacy credentials are compromised or if an insider misuses their access rights.

Attack description

An attacker or malicious insider with access to one of these legacy IAM accounts could exploit

the permission to create an access key for the administrative user (Shachar). By generating a

new access key, the attacker could gain unauthorized administrative access. This would

potentially allow them to modify configurations, exfiltrate sensitive data, or perform other

high-impact actions within the AWS environment.

The attack vector that can be utilized to gain unauthorized access can be seen in the following

photo:

Page 10

Groups with the tnAccess list permission can create an access key to Shacher's user and gain

an admin access to the AWS environment.

Countermeasures

It is recommended to delete users that are no longer in use such as the Analysts and

DevReadOnly who has access to the permissions to create access key for Shachar's user.

Conduct a comprehensive review of IAM policies to ensure adherence to the principle of

least privilege, removing any unnecessary or outdated permissions.

•

•

Page 11

3. Username Enumeration via WPScan
Medium Severity Likelihood: High, Impact: Low

Threat Description

The audit found that usernames are disclosed on the marketing site. The system allows an

attacker to obtain a list of the system’s users by scanning the WP instance with WPScan.

Impact Description

The exposure of valid usernames enables attackers to more easily conduct brute force or

credential stuffing attacks. Knowledge of legitimate user accounts can be combined with

social engineering or phishing strategies to compromise additional security layers..

Likelihood Description

This vulnerability is highly likely to be exploited since WPScan and similar automated scanning

tools are freely available and commonly used by attackers. Additionally, many WordPress

installations retain default configurations that expose author information, making the attack

both easy and effective.

Attack description

Attackers can automate the discovery of valid usernames by running WPScan or similar tools

against the WordPress instance as can be seen in the following picture:

Page 12

Page 13

Once valid usernames are enumerated, adversaries may employ brute force, dictionary

attacks, or credential stuffing to compromise accounts or use the information for targeted

social engineering campaigns.

Countermeasures

Disable or limit access to endpoints that expose author information. Use plugins or

custom code to obfuscate usernames.

Review and update WordPress security settings to minimize information leakage.

consider using plugins such as "Stop User Enumeration"

•

•

Page 14

https://wordpress.org/plugins/stop-user-enumeration/

4. Exposure of Slack Bot Token and Slack Webhooks in AWS
Environment Variables

Medium Severity Likelihood: Low, Impact: High

Threat Description

 Slack bot tokens and Slack webhook URLs are stored directly in the environment variables of

AWS Lambda functions rather than being managed via a secure secrets manager. This

misconfiguration allows users with certain AWS IAM permissions to access these sensitive

credentials, increasing the risk of unauthorized use.

Impact Description

Malicious actors can use the bot to disseminate malicious content or phishing links,

compromising the integrity of internal communications.

Likelihood Description

An attacker would first need to obtain an AWS user with sufficient permissions to read the data

from the lambda function.

Attack description

An attacker or a malicious insider with sufficient AWS permissions can inspect Lambda

function configurations to retrieve these environment variables, as can be seen in the

Following photo:

Page 15

With access to the Slack bot token and webhook URLs, the attacker can impersonate the bot,

sending unauthorized messages, malicious links, or phishing content to Slack channels.

This impersonation could be leveraged to deceive team members, propagate misinformation,

or serve as a foothold for further attacks.

Page 16

Countermeasures

Migrate all sensitive credentials to AWS Secrets Manager or an equivalent secure storage

solution designed for managing secrets.

If immediate migration is not feasible, ensure that environment variables are encrypted

and accessible only to a minimal set of privileged users.

•

•

Page 17

5. Outdated OpenSSH Utilized in the Internal Network
Low Severity Likelihood: Medium, Impact: Low

Threat Description

During the internal network assessment, it was identified that several systems are running an

outdated version of OpenSSH. Although these systems are protected by internal network

defenses, the use of an outdated SSH version exposes them to known vulnerabilities and

security limitations that have been resolved in later releases.

Impact Description

Once inside the network, an attacker may use the outdated SSH service to

gain control over the system and escalate privileges, or as a pivot point for

infiltrating other systems.

Likelihood Description

A malicious actor would need to gain a foothold within the internal network.

Attack description

An attacker who gains internal access or successfully bypasses network segmentation could

target these outdated SSH services. Exploitation may involve leveraging known vulnerabilities

in OpenSSH.

The following photo show a list of targets that are running an out dated OpenSSH:

Page 18

Countermeasures

Update all systems running OpenSSH to the latest stable version.•

Page 19

Implement a robust patch management process to ensure that all internal systems are

regularly updated and secured.

•

Page 20

6. Username Enumeration via Login Page Error Message
Low Severity Likelihood: Medium, Impact: Low

Threat Description

A vulnerability was observed on the login page where different error messages are returned

depending on the existence of the username provided. This discrepancy enables an attacker to

determine the validity of a username, thereby facilitating targeted brute force and credential

stuffing attacks.

Impact Description

Gaining valid usernames can help attackers focus their efforts on compromising accounts

through brute force or credential stuffing.

Likelihood Description

The attack is simple to execute using both automated tools and manual methods and relies on

the attacker successfully guessing usernames.

Attack description

By systematically submitting login attempts with various usernames, an attacker can

differentiate between valid and invalid accounts based on the error messages received. Once

valid usernames are confirmed, attackers can focus on exploiting those accounts through

brute force, phishing, or other credential-based attacks.

The following photo shows the error message displayed when attempting to login with a

username that does not exist:

Page 21

The following photo shows that the username exists but the password is incorrect:

Countermeasures

· Send a uniform error message (e.g., “Invalid login credentials”) for all failed login attempts,

regardless of whether the username or password is incorrect.

Page 22

Appendix A Work Scheme
Infrastructure Testing Methodology
2BSecure’s inspection methodology relies on ISC², which involves vast testing at the

infrastructure level with an emphasis on the development stage. The inspection technique

relies on manual tests as well as automatic tools. Testing was performed using a black box

approach, meaning the testing team had no prior knowledge of the tested servers. This unique

approach offers an actual simulation of a real hacker trying to attack the application,

infrastructure, and end users. This test enables determining the security level and vulnerability

of the servers and network.

Application Testing Methodology
2BSecure’s inspection methodology relies on OWASP, which involves vast testing at the

application level with an emphasis on the development stage. The inspection technique relies

on manual tests as well as automatic tools. Testing was performed using a black box approach,

meaning the testing team had no prior knowledge about the application. This unique

approach offers an actual simulation of a real hacker trying to attack the application and the

end users. This test enables determining the security level and vulnerability of the application.

List of tests performed during the penetration test:
The following is a list of attacks and tests performed during the investigation. The list includes

all known attacks at the present time. It is important to state that the system has been found

vulnerable to the attacks described in this document, however there may be vulnerabilities

that were not revealed during the test due to time limitations and the test methodology used.

The following table lists the tests performed as part of the penetration tests:

Authentication Verification Requirements

Password Security Requirements
Test that user-set passwords are at least 12 characters long.

Verify that password change requires the user's current and new password.

General Authenticator Requirements

Verify that anti-automation controls are effective at mitigating breached credential testing, brute force, and account
lockout attacks.

Test that use of weak authenticators (such as SMS and email) is limited to secondary verification and transaction approval.

Authenticator Lifecycle Requirements Verify that the system securely and randomly generates initial passwords and activation codes that are at least 6
characters long, and expire after a short period of time.

Credential Recovery Requirements

Verify that system-generated initial activation or recovery secrets are not sent in clear text to the user.

Verify that password credential recovery does not reveal the current password in any way.

Shared or default accounts are not present (e.g.root",admin", orsa").

Page 23

Verify that forgotten password and other recovery paths use a secure recovery mechanism.

Single or Multi-factor One Time Verifier
Requirements Verify that time-based OTPs expire after a pre-defined lifetime.

Session Management Verification Requirements

Session Binding Requirements

Verify that the application generates a new session token upon user authentication.

Verify that the application only stores session tokens in the browser using secure methods such as appropriately secured
cookies or HTML 5 session storage.

Session Logout and Timeout
Requirements Verify that logout and expiration invalidate the session token, including across relaying parties.

Cookie-based Session Management

Verify that cookie-based session tokens have the 'Secure' and ‘HttpOnly’ attributes set.

Test if the application shares a domain name with other applications that set or use session cookies that overwrite or
disclose the session cookies.

Defenses Against Session Management
Exploits

Verify that the application ensures a full, valid login session or requires re-authentication or secondary verification before
allowing any sensitive transactions.

Access Control Verification Requirements

General Access Control Design

Verify that the application enforces access control rules on a trusted service layer.

Verify that all user and data attributes and policy information used by access controls cannot be manipulated by end users
unless they have been specifically authorized.

Verify that the principle of least privilege exists. This implies protection against spoofing and elevation of privilege.

Verify that the principle of deny by default exists.

Verify that access controls fail securely, including when an exception occurs.

Operation Level Access Control
Verify that sensitive data and APIs are protected against Insecure Direct Object Reference (IDOR) attacks.

Verify that the application or framework enforces a strong anti-CSRF mechanism to protect authenticated functionality.

Other Access Control Considerations
Verify that administrative interfaces use appropriate multi-factor authentication to prevent unauthorized use.

Verify that directory browsing is disabled unless deliberately desired.

Validation, Sanitization and Encoding Verification Requirements

Input Validation Requirements

Verify that the application has defenses against HTTP parameter pollution attacks.

Verify that the frameworks protect against mass parameter assignment attacks.

Verify that all input (HTML form fields, REST requests, URL parameters, HTTP headers, cookies, batch files, RSS feeds, etc.)
is validated.

Verify that structured data is strongly typed and validated against a defined schema, including allowed characters, length,
and pattern.

Verify that the URL redirects and forwards only allowed destinations that appear on an allow list, or shows a warning when
redirecting to untrusted content.

Sanitization and Sandboxing
Requirements

Verify that all untrusted HTML input from WYSIWYG editors or similar is properly sanitized with an HTML sanitizer library or
framework feature.

Verify that the application sanitizes user input before passing it on to mail systems, to protect against SMTP or IMAP
injection.

Verify that the application protects against template injection attacks.

Verify that the application protects against SSRF attacks.

Verify that context-aware, preferably automated - or at worst, manual - output escaping protects against reflected, stored,
and DOM based XSS.

Verify that data selection or database queries (e.g. SQL, HQL, ORM, NoSQL) are protected from database injection attacks.

Test for JavaScript or JSON injection attacks, including for eval attacks, remote JavaScript includes, Content Security
Policy (CSP) bypasses, DOM XSS, and JavaScript expression evaluation.

Test for LDAP injection vulnerabilities, or that specific security controls that prevent LDAP injection have been
implemented.

Test for OS command injection.

Test for Local File Inclusion (LFI) or Remote File Inclusion (RFI) attacks.

Test for XPath injection or XML injection attacks.

Deserialization Prevention
Requirements

Verify that serialized objects use integrity checks or are encrypted to prevent hostile object creation or data tampering.

Test for XML eXternal Entity (XXE) attacks.

Page 24

Verify that deserialization of untrusted data is avoided or protected in both custom code and third-party libraries (such as
JSON, XML and YAML parsers).

Verify that when parsing JSON in browsers or JavaScript-based backends, JSON.parse is used to parse the JSON
document.

Error Handling and Logging Verification Requirements

Error Handling Verify that a generic message is shown when an unexpected or security sensitive error occurs.

Data Protection Verification Requirements

Sensitive Private Data
Verify that sensitive data is sent to the server in the HTTP message body or headers.

Verify that all sensitive data created and processed by the application has been identified.

Communications Verification Requirements

Client Communications Security
Requirements

Verify that secured TLS is used for all client connectivity.

Verify that only strong algorithms, ciphers, and protocols are enabled.

Verify that old versions of SSL and TLS protocols, algorithms, ciphers, and configuration are disabled.

Malicious Code Verification Requirements

Deployed Application Integrity
Controls

Test that the application doesn’t load or execute code from untrusted sources or the internet, such as loading includes,
modules, plugins, code, or libraries.

Verify that the application has protection against subdomain takeovers.

Business Logic Security Requirements

Verify that the application will only process business logic flows for the same user in sequential step order and without
skipping steps.

Verify that the application has appropriate limits for specific business actions or transactions, which are correctly enforced
on a per-user basis.

Test for data exfiltration, excessive business logic requests, excessive file uploads, or denial of service attacks.

Verify that the application has business logic limits or validation, identified using threat modeling or similar
methodologies.

File and Resources Verification Requirements

File Upload Requirements Test for acceptance of large files that could fill up storage or cause a denial of service.

File Execution Requirements

Verify that user-submitted filename metadata is not used directly by system or framework filesystems and that a URL API is
used to protect against path traversal.

Verify that user-submitted filename metadata is validated or ignored to prevent the disclosure, creation, update, or
removal of local files (LFI).

Test for disclosure or execution of remote files via Remote File Inclusion (RFI) or Server-Side Request Forgery (SSRF)
attacks.

Test for Reflective File Download (RFD) by validating or ignoring user-submitted filenames in a JSON, JSONP, or URL
parameter.

Verify that untrusted file metadata is not used directly with system API or libraries, to protect against OS command
injection.

File Storage Requirements

Verify that files obtained from untrusted sources are stored outside the web root, with limited permissions, preferably with
strong validation.

Verify that files obtained from untrusted sources are scanned by antivirus scanners to prevent upload of known malicious
content.

File Download Requirements

Verify that the web tier is configured to serve only files with specific file extensions, to prevent unintentional information
and source code leakage.

Verify that direct requests to uploaded files will never be executed as HTML/JavaScript content.

SSRF Protection Requirements Verify that the web or application server is configured with an allow list of resources or systems that can send requests or
load data/files from.

API and Web Service Verification Requirements

Generic Web Service Security
Verification Requirements

Test for parsing attacks that exploit different URI or file parsing behavior that could be used in SSRF and RFI attacks.

Verify that access to administration and management functions is limited to authorized administrators.

Verify that API URLs do not expose sensitive information, such as the API key, session tokens, etc.

RESTful Web Service Verification
Requirements

Verify that JSON schema validation is in place and verified before accepting input.

Verify that RESTful web services that utilize cookies are protected from Cross-Site Request Forgery.

Configuration Verification Requirements

Dependency Verify that all components are up to date.

Page 25

Verify that all unneeded features, documentation, samples, and configurations are removed.

Unintended Security Disclosure
Requirements

Verify that error messages are not showing any unintended security disclosures.

Verify that debug modes are disabled in production to eliminate debug features, developer consoles, and unintended
security disclosures.

Verify that the HTTP headers or any part of the HTTP response do not expose detailed version information of system
components.

HTTP Security Headers Requirements

Verify that a Content Security Policy (CSP) response header is in place that helps mitigate impact of XSS attacks like HTML,
DOM, JSON, and JavaScript injection.

Verify that a Strict-Transport-Security header is included in all responses and for all subdomains

Test that the content of a web application cannot be embedded in a third-party site by default, and frame-ancestors and X-
Frame-Options response headers are set.

Validate HTTP Request Header
Requirements

Verify that the supplied Origin header is not used for authentication or access control decisions.

Verify that the Cross-Origin Resource Sharing (CORS) Access-Control-Allow-Origin header uses a strict allow list of trusted
domains and subdomains to match against, and does not support thenull" origin.

Page 26

	Web Application Penetration Test Report
	Table of Contents
	Overview
	Findings - Infrastructure

	Track Changes
	Executive Summary
	General
	System Description
	Activity Description

	Scope
	Conclusions
	Vulnerabilities Index
	Application Vulnerability Description
	1. Lack of software updates
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	2. IAM Users with Overlooked Permissions to Create Access Keys for Admin Accounts
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	3. Username Enumeration via WPScan
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	4. Exposure of Slack Bot Token and Slack Webhooks in AWS Environment Variables
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	5. Outdated OpenSSH Utilized in the Internal Network
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	6. Username Enumeration via Login Page Error Message
	Threat Description
	Impact Description
	Likelihood Description
	Attack description
	Countermeasures

	Appendix A Work Scheme
	Infrastructure Testing Methodology
	Application Testing Methodology
	List of tests performed during the penetration test:

